Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Appl Clin Med Phys ; 23(11): e13770, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2013307

ABSTRACT

PURPOSE: This study aims to investigate practice changes among Southern and Northern California's radiation oncology centers during the COVID-19 pandemic. METHODS: On the online survey platform SurveyMonkey, we designed 10 survey questions to measure changes in various aspects of medical physics practice. The questions covered patient load and travel rules; scopes to work from home; new protocols to reduce corona virus disease-2019 (COVID-19) infection risk; availability of telemedicine; and changes in fractionation schedules and/or type of treatment plans. We emailed the survey to radiation oncology centers throughout Northern and Southern California, requesting one completed survey per center. All responses were anonymized, and data were analyzed using both qualitative and quantitative research methods. RESULTS: At the end of a 4-month collection period (July 2, 2021 to October 11, 2021), we received a total of 61 responses throughout Southern and Northern California. On average, 4111 patients were treated per day across the 61 centers. New COVID-19-related department and hospital policies, along with hybrid workflow changes, infectious control policies, and changes in patient load have been reported. Results also showed changes in treatment methods during the pandemic, such as increased use of telemedicine, hypofractionation for palliative, breast cancer, and prostate cancer cases; and simultaneous boosts, compared to sequential boosts. CONCLUSION: Our California radiation oncology center population study shows changes in various aspects of radiation oncology practices during the COVID-19 pandemic. This study serves as a pilot study to identify possible correlations and new strategies that allow radiation oncology centers to continue providing quality patient care while ensuring the safety of both staff and patients.


Subject(s)
COVID-19 , Telemedicine , Male , Humans , Pandemics , COVID-19/epidemiology , COVID-19/prevention & control , Pilot Projects , Infection Control/methods
2.
CMAJ ; 192(49): E1747-E1756, 2020 Dec 07.
Article in French | MEDLINE | ID: covidwho-1791000

ABSTRACT

CONTEXTE: La demande sans précédent de respirateurs N95 durant la pandémie de maladie à coronavirus 2019 (COVID-19) a entraîné une pénurie mondiale. Nous avons validé un protocole de décontamination rapide et économique répondant aux normes réglementaires afin de permettre la réutilisation sûre de ce type de masque. MÉTHODES: Nous avons contaminé 4 modèles courants de respirateurs N95 avec le coronavirus du syndrome respiratoire aigu sévère 2 (SRAS-CoV-2) et avons évalué l'inactivation virale après une désinfection de 60 minutes à 70 °C et à une humidité relative de 0 %. De même, nous avons étudié l'efficacité de la désinfection thermique, à une humidité relative allant de 0 % à 70 %, de masques contaminés à Escherichia coli. Enfin, nous avons examiné des masques soumis à de multiples cycles de désinfection thermique: nous avons évalué leur intégrité structurelle à l'aide d'un microscope à balayage, et leurs propriétés protectrices au moyen des normes du National Institute for Occupational Safety and Health des États-Unis relatives à la filtration particulaire, à la résistance respiratoire et à l'ajustement. RÉSULTATS: Une seule désinfection thermique a suffi pour que le SRAS-CoV-2 ne soit plus décelable sur les masques étudiés. En ce qui concerne les masques contaminés à E. coli, une culture de 24 heures a révélé que la bactérie n'était pratiquement plus décelable sur les masques désinfectés à 70 °C et à une humidité relative de 50 %, contrairement aux masques non désinfectés (densité optique à une longueur d'onde de 600 nm : 0,02 ± 0,02 contre 2,77 ± 0,09; p < 0,001), mais qu'elle persistait sur les masques traités à une humidité relative moindre. Les masques ayant subi 10 cycles de désinfection avaient toujours des fibres de diamètre semblable à celui des fibres des masques non traités, et ils répondaient encore aux normes d'ajustement, de filtration et de résistance respiratoire. INTERPRÉTATION: La désinfection thermique a réussi à décontaminer les respirateurs N95 sans compromettre leur intégrité structurelle ni modifier leurs propriétés. Elle pourrait se faire dans les hôpitaux et les établissements de soins de longue durée avec de l'équipement facilement accessible, ce qui réduirait la pénurie de N95.

3.
J Diabetes Sci Technol ; 15(4): 916-960, 2021 07.
Article in English | MEDLINE | ID: covidwho-1403193

ABSTRACT

Diabetes Technology Society hosted its annual Diabetes Technology Meeting on November 12 to November 14, 2020. This meeting brought together speakers to cover various perspectives about the field of diabetes technology. The meeting topics included artificial intelligence, digital health, telemedicine, glucose monitoring, regulatory trends, metrics for expressing glycemia, pharmaceuticals, automated insulin delivery systems, novel insulins, metrics for diabetes monitoring, and discriminatory aspects of diabetes technology. A live demonstration was presented.


Subject(s)
Diabetes Mellitus, Type 1 , Diabetes Mellitus , Artificial Intelligence , Blood Glucose , Blood Glucose Self-Monitoring , Diabetes Mellitus/drug therapy , Humans , Technology
4.
Endocrinol Metab (Seoul) ; 36(2): 240-255, 2021 04.
Article in English | MEDLINE | ID: covidwho-1359307

ABSTRACT

Continuous glucose monitors (CGMs) have suddenly become part of routine care in many hospitals. The coronavirus disease 2019 (COVID-19) pandemic has necessitated the use of new technologies and new processes to care for hospitalized patients, including diabetes patients. The use of CGMs to automatically and remotely supplement or replace assisted monitoring of blood glucose by bedside nurses can decrease: the amount of necessary nursing exposure to COVID-19 patients with diabetes; the amount of time required for obtaining blood glucose measurements, and the amount of personal protective equipment necessary for interacting with patients during the blood glucose testing. The United States Food and Drug Administration (FDA) is now exercising enforcement discretion and not objecting to certain factory-calibrated CGMs being used in a hospital setting, both to facilitate patient care and to obtain performance data that can be used for future regulatory submissions. CGMs can be used in the hospital to decrease the frequency of fingerstick point of care capillary blood glucose testing, decrease hyperglycemic episodes, and decrease hypoglycemic episodes. Most of the research on CGMs in the hospital has focused on their accuracy and only recently outcomes data has been reported. A hospital CGM program requires cooperation of physicians, bedside nurses, diabetes educators, and hospital administrators to appropriately select and manage patients. Processes for collecting, reviewing, storing, and responding to CGM data must be established for such a program to be successful. CGM technology is advancing and we expect that CGMs will be increasingly used in the hospital for patients with diabetes.


Subject(s)
Blood Glucose Self-Monitoring/trends , Blood Glucose/metabolism , COVID-19/epidemiology , Diabetes Mellitus/blood , Diabetes Mellitus/epidemiology , Hospitals/trends , Blood Glucose Self-Monitoring/methods , COVID-19/prevention & control , Humans , Hypoglycemia/blood , Hypoglycemia/epidemiology , Hypoglycemia/prevention & control , Monitoring, Ambulatory/methods , Monitoring, Ambulatory/trends
5.
J Diabetes Sci Technol ; 16(5): 1303-1308, 2022 09.
Article in English | MEDLINE | ID: covidwho-1226851

ABSTRACT

Digital health and telehealth connectivity have become important aspects of clinical care. Connected devices, including continuous glucose monitors and automated insulin delivery systems for diabetes, are being used increasingly to support personalized clinical decisions based on automatically collected data. Furthermore, the development, demand, and coverage for telehealth have all recently expanded, as a result of the COVID-19 pandemic. Medical care, and especially diabetes care, are therefore becoming more digital through the use of both connected digital health devices and telehealth communication. It has therefore become necessary to integrate digital data into the electronic health record and maintain personal data confidentiality, integrity, and availability. Connected digital monitoring combined with telehealth communication is known as virtual health. For this virtual care paradigm to be successful, patients must have proper skills, training, and equipment. We propose that along with the five current vital signs of blood pressure, pulse, respiratory rate, temperature, and pain, at this time, digital connectivity should be considered as the sixth vital sign. In this article, we present a scale to assess digital connectivity.


Subject(s)
COVID-19 , Diabetes Mellitus , Telemedicine , Humans , Pandemics , Vital Signs
6.
J Diabetes Sci Technol ; 15(2): 478-514, 2021 03.
Article in English | MEDLINE | ID: covidwho-1040012

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus has rapidly involved the entire world and exposed the pressing need for collaboration between public health and other stakeholders from the clinical, scientific, regulatory, pharmaceutical, and medical device and technology communities. To discuss how to best protect people with diabetes from serious outcomes from COVID-19, Diabetes Technology Society, in collaboration with Sansum Diabetes Research Institute, hosted the "International COVID-19 and Diabetes Virtual Summit" on August 26-27, 2020. This unique, unprecedented real-time conference brought together physicians, scientists, government officials, regulatory experts, industry representatives, and people with diabetes from six continents to review and analyze relationships between COVID-19 and diabetes. Over 800 attendees logged in. The summit consisted of five sessions: (I) Keynotes, (II) Preparedness, (III) Response, (IV) Recovery, and (V) Surveillance; eight parts: (A) Background, (B) Resilience, (C) Outpatient Care, (D) Inpatient Care, (E) Resources, (F) High-Risk Groups, (G) Regulation, and (H) The Future; and 24 sections: (1) Historic Pandemics and Impact on Society, (2) Pathophysiology/Risk Factors for COVID-19, (3) Social Determinants of COVID-19, (4) Preparing for the Future, (5) Medications and Vaccines, (6) Psychology of Patients and Caregivers, (7) Outpatient Treatment of Diabetes Mellitus and Non-Pharmacologic Intervention, (8) Technology and Telehealth for Diabetes Outpatients, (9) Technology for Inpatients, (10) Management of Diabetes Inpatients with COVID-19, (11) Ethics, (12) Accuracy of Diagnostic Tests, (13) Children, (14) Pregnancy, (15) Economics of Care for COVID-19, (16) Role of Industry, (17) Protection of Healthcare Workers, (18) People with Diabetes, (19) International Responses to COVID-19, (20) Government Policy, (21) Regulation of Tests and Treatments, (22) Digital Health Technology, (23) Big Data Statistics, and 24) Patient Surveillance and Privacy. The two keynote speeches were entitled (1) COVID-19 and Diabetes-Meeting the Challenge and (2) Knowledge Gaps and Research Opportunities for Diabetes and COVID-19. While there was an emphasis on diabetes and its interactions with COVID-19, the panelists also discussed the COVID-19 pandemic in general. The meeting generated many novel ideas for collaboration between experts in medicine, science, government, and industry to develop new technologies and disease treatment paradigms to fight this global pandemic.


Subject(s)
COVID-19/epidemiology , Diabetes Mellitus/epidemiology , Diabetes Mellitus/therapy , COVID-19/complications , Diabetes Complications/epidemiology , Diabetes Complications/prevention & control , Geography , Global Health , History, 20th Century , Humans , Influenza Pandemic, 1918-1919/history , International Cooperation , Pandemics , Societies, Medical , Telemedicine/trends
7.
J King Saud Univ Sci ; 32(7): 3159-3166, 2020 Oct.
Article in English | MEDLINE | ID: covidwho-747723

ABSTRACT

OBJECTIVES: The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, also known as COVID-19 pandemic has caused an alarming situation worldwide. Since the first detection, in December 2019, there have been no effective drug therapy options for treating the SARS-CoV-2 pandemic. However, healthcare professionals are using chloroquine, hydroxychloroquine, remdesivir, convalescent plasma and some other options of treatments. This study aims to compare the biological, molecular, pharmacological, and clinical characteristics of these three treatment modalities for SARS-COV-2 infections, Chloroquine and Hydroxychloroquine, Convalescent Plasma, and Remdesivir. METHODS: A search was conducted in the "Institute of Science Information (ISI)-Web of Science, PubMed, EMBASE, ClinicalTrials.gov, Cochrane Library databases, Scopus, and Google Scholar" for peer reviewed, published studies and clinical trials through July 30, 2020. The search was based on keywords "COVID-19" SARS-COV-2, chloroquine, hydroxychloroquine, convalescent plasma, remdesivir and treatment modalities. RESULTS: As of July 30, 2020, a total of 36,640 relevant documents were published. From them 672 peer reviewed, published articles, and clinical trials were screened. We selected 17 relevant published original articles and clinical trials: 05 for chloroquine and/or hydroxychloroquine with total sample size (n = 220), 05 for Remdesivir (n = 1,781), and 07 for Convalescent Plasma therapy (n = 398), with a combined total sample size (n = 2,399). Based on the available data, convalescent plasma therapy showed clinical advantages in SARS-COV-2 patients. CONCLUSIONS: All three treatment modalities have both favorable and unfavorable characteristics, but none showed clear evidence of benefit for early outpatient disease or prophylaxis. Based on the current available data, convalescent plasma therapy appears to show clinical advantages for inpatient use. In the future, ongoing large sample size randomized controlled clinical trials may further clarify the comparative efficacy and safety of these three treatment classes, to conclusively determine whom to treat with which drug and when to treat them.

8.
J Diabetes Sci Technol ; 14(5): 928-944, 2020 09.
Article in English | MEDLINE | ID: covidwho-714375

ABSTRACT

Patients with diabetes may experience adverse outcomes related to their glycemic control when hospitalized. Continuous glucose monitoring systems, insulin-dosing software, enhancements to the electronic health record, and other medical technologies are now available to improve hospital care. Because of these developments, new approaches are needed to incorporate evolving treatments into routine care. With the goal of educating healthcare professionals on the most recent practices and research for managing diabetes in the hospital, Diabetes Technology Society hosted the Virtual Hospital Diabetes Meeting on April 24-25, 2020. Because of the coronavirus disease 2019 (COVID-19) pandemic, the meeting was restructured to be held virtually during the national lockdown to ensure the safety of the participants and allow them to remain at their posts treating COVID-19 patients. The meeting focused on (1) inpatient management and perioperative care, (2) diabetic ketoacidosis and hyperglycemic hyperosmolar state, (3) computer-guided insulin dosing, (4) Coronavirus Disease 2019 and diabetes, (5) technology, (6) hypoglycemia, (7) data and cybersecurity, (8) special situations, (9) glucometrics and insulinometrics, and (10) quality and safety. This meeting report contains summaries of each of the ten sessions. A virtual poster session will be presented within two months of the meeting.


Subject(s)
Coronavirus Infections , Diabetes Mellitus/therapy , Pandemics , Pneumonia, Viral , Betacoronavirus , COVID-19 , Coronavirus Infections/complications , Coronavirus Infections/therapy , Humans , Inpatients , Pneumonia, Viral/complications , Pneumonia, Viral/therapy , SARS-CoV-2
9.
CMAJ ; 192(41): E1189-E1197, 2020 10 13.
Article in English | MEDLINE | ID: covidwho-690395

ABSTRACT

BACKGROUND: Unprecedented demand for N95 respirators during the coronavirus disease 2019 (COVID-19) pandemic has led to a global shortage of these masks. We validated a rapidly applicable, low-cost decontamination protocol in compliance with regulatory standards to enable the safe reuse of N95 respirators. METHODS: We inoculated 4 common models of N95 respirators with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and evaluated viral inactivation after disinfection for 60 minutes at 70°C and 0% relative humidity. Similarly, we evaluated thermal disinfection at 0% to 70% relative humidity for masks inoculated with Escherichia coli. We assessed masks subjected to multiple cycles of thermal disinfection for structural integrity using scanning electron microscopy and for protective functions using standards of the United States National Institute for Occupational Safety and Health for particle filtration efficiency, breathing resistance and respirator fit. RESULTS: A single heat treatment rendered SARS-CoV-2 undetectable in all mask samples. Compared with untreated inoculated control masks, E. coli cultures at 24 hours were virtually undetectable from masks treated at 70°C and 50% relative humidity (optical density at 600 nm wavelength, 0.02 ± 0.02 v. 2.77 ± 0.09, p < 0.001), but contamination persisted for masks treated at lower relative humidity. After 10 disinfection cycles, masks maintained fibre diameters similar to untreated masks and continued to meet standards for fit, filtration efficiency and breathing resistance. INTERPRETATION: Thermal disinfection successfully decontaminated N95 respirators without impairing structural integrity or function. This process could be used in hospitals and long-term care facilities with commonly available equipment to mitigate the depletion of N95 masks.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Disease Transmission, Infectious/prevention & control , Disinfection/methods , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Respiratory Protective Devices/standards , COVID-19 , Hot Temperature , Humans , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL